Hello,Welcome to XFNANO!
Applications Home > Applications

The Potential Applications of Graphene

 

Dai et al [22] found that chemically derived and noncovalently functionalized graphene sheets could self-assemble onto patterned gold structures via electrostatic interactions between the functional groups and the gold surfaces (figure 10). The self-assembled graphene sheets may be used as the molecular sensors for highly sensitive gas detection.

 

Figure 10.      Self-assembly of graphene sheets (GS) on gold: (a) an AFM image of as-made GS; (b) a schematic drawing of noncovalently functionalized GS; (c) a schematic drawing of selective adsorption of GS on a gold pattern on silicon dioxide, mediated by electrostatic interactions between positively charged groups on GS and negative ions adsorbed on Au

Highly conducting graphene sheets produced by the exfoliation–reintercalation–expansion of graphite are readily suspended in organic solvents [23]. The sheets in organic solvents can be made into large, transparent, conducting films by Langmuir–Blodgett assembly in a layer-by-layer Manner (figure 11). Sun et al [24] found that the intrinsic photoluminescence of graphene oxide was used for live cell imaging in the near-infrared with little background. Owing to its small size, intrinsic optical properties, large specific surface area, low cost, and useful non-covalent interactions with aromatic drug molecules, graphene oxide is a promising new material for biological and medical applications (figure 12).

 

 

Figure 11.      a) Schematic representation of the exfoliated graphite reintercalated with sulphuric acid molecules (spheres) between the layers. b) Schematic of tetrabutyl ammoniumhydroxide (TBA; dark blue spheres) in the intercalated graphite. c) Schematic of single-layer graphene coated with DSPE–mPEG molecules also shown is a photograph of the solution of single-layer graphene.

 

Figure 12.      A schematic illustration of doxorubicin (DOX) loading onto NGO PEG Rituxan via π-stacking

 

Figure 13.      Structure of 6THIOP-NH-SPFGraphene.

Ultraviolet–visible absorption and fluorescence emission data of functionalized graphene hybrid material with oligothiophene show that the attachment of the lectron-acceptor group (graphene oxide sheet) onto the oligothiophene molecules results in an improved absorption than its parent compound in the whole spectral region and an efficient quenching of photoluminescence[25] (figure 13).

 

Figure 14.      Charge and discharge curves of graphene nanosheets as anode in lithium-ion cells. The inset is the cyclic voltammograms of graphene nanosheet electrode.

Wang et al [26] found that the nanosheets exhibited an enhanced lithium storage capacity as anodes in lithium-ion cells and good cyclic performance (figure 14). Cao et al. [27] prepared a graphene-CdS nanocomposite material with good structural and optoelectronic properties by a facile one-step reaction. Graphene oxide has been simultaneously reduced to graphene during the deposition of CdS. This simple approach takes advantage of the stable single-layer property of graphene oxide to guarantee the final graphene-CdS product in a single-layer form (figure 15).

 

Figure 15.      a) Scheme of the one-step synthesis of G-CdS. The CdS QDs are not shown at their actual size. b) Scheme of the solvothermal reduction of GO to graphene in DMSO.

References

[1]   K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.

[2]   C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Science 2006, 12, 191.

[3]   C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.

[4]   T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Pru’homme, L. C. Brinson. Nature Nanotech. 2008, 3, 327.

[5]   S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Nature 2006, 442, 282.

[6]   Y. G. Yang, C. M. Chen, Y. F. Wen, Q. H. Yang, M. Z. Wang, New Carbon Mater. 2008, 23, 193.

[7]   V. A. Sinani, M. K. Gheith, A. A. Yaroslavov, A. A. Pakhnyanskaya, K. Sun, A. A. Mamedov, J. P. Wichsted, N. A. Kotov, J. Am. Chem. Soc. 2005, 127, 3463.

[8]   J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. M. D. Tascon, Langmuir 2008, 24, 10560.

[9]   G. X. Wang, B. Wang, J. Park, J. Yang, X. P. Shen, J. Yao, Carbon, 2009, 47, 68.

[10] Y. C. Si, E. T. Samulski, Nano Lett. 2008, 8, 1679.

[11] Y. Chen, X. Zhang, P. Yu, Y. W. Ma, Chem. Commun. 2009, 4527.

[12] S. Z. Zhu, B. H. Han, J. Phys. Chem. C 2009, 113, 13651.

[13] C. S. Shan, H. F. Yang, D. X. Han, Q. X. Zhang, A. Ivaska, L.Niu, Langmuir 2009, 25, 12030.

[14] S. J. Park, J. H. An, R. D. Piner, I. Jung, D. X. Yang, A. Velamakanni, S. T. Nguyen, R. S. Ruoff, Chem. Mater. 2008, 20, 6592.

[15] X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, Adv. Mater. 2008, 20, 4490

[16] C. Xu, X. D. Wu, J. W. Zhu, X. Wang, Carbon, 2008, 46, 386.

[17] S. Stankovich, R. Piner, S. T. Nguyen, R. S. Ruoff, Carbon 2006, 44, 3342.

[18] S. Niyogi,  E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, R. C. Haddon, J. Am. Chem. Soc. 2006, 128, 7720.

[19] K. A. Worsley, P. Ramesh, S. K. Mandal, S. Niyogi, M. E. Itkis, R. C. Haddon, Chem. Phys. Lett. 2007, 445, 51.

[20] K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj,C. N. R. Rao, J. Mater. Chem. 2008, 18, 1517

[21] H. L. Wang, J. T. Robinson, X. L. Li, H. J. Dai. J. Am. Chem. Soc. 2009, 131, 9910.

[22] H. L. Wang, X. R. Wang, X. L. Li, H. J. Dai. Nano Res. 2009, 2, 336.

[23] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752.

[24] X. M. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. J. Dai. Nano Res. 2008, 1, 203.

[25] Y. S. Liu, J. Y. Zhou, X. L. Zhang, Z. B. Liu, X. J. Wan, J. G. Tian, T. Wang, Y. S. Liu. Carbon, 2009, 47, 3113.

[26] G. X. Wang, X. P. Shen, J. Yao, J. Park. Carbon, 2009, 47, 2049.

[27] A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu. Adv. Mater. 2009, 21,